
DISCRETE
APPLIED

ELSEVIEK Discrete Applied Mathematics Wi (1999) I XlLlYl

MATHEMATICS

Approximation algorithms for partitioning small items in
unequal bins to minimize the total size

P. Dell’Olmo”, M. Grazia Speranzab, *

Received 28 November 1996; rekiscd 29 January 199X: acccpred X May 199X

.4bstract

A set of items has to be assigned to a set of bins with different sizes. If necessary the size of

each bin can be extended. The objective is to minimize the total size, i.e. the sum of the sixs

of the bins. In this paper we study both the oll-line case and the on-line variant of this problem

under the assumption that each item is smaller than any bin. For the rurmer case, when all times

arc known in advance, we analyze the worst-case performance of the longest processing time

heuristic and prove a bound of 2(2 - A). For the on-line case, where each incoming itetn has

to be assigned immediately to a bin and the assignment cannot bc changed later, WC give a

lower bound of f; on the worst-case relative error of any on-line algorithm with respect to the

off-line problem and we show that a list scheduling algorithm, which assigns the incoming item

to the bin with biggest idle space, has a worst-case performance ratio equal to $. This bound is

shown to be tight. C 1999 Elsevier Science B.V. All rights reserved.

ti~,j,~c~ortfs: Bin-packing; Multiprocessor scheduling; Approximation, On-line algorithma; Wm+

cslsc pcrformancc

I. Introduction

In the variable sized bin-packing problem, a list of items and an inexhaustible set of

unequal bins are given and one is asked to pack the items into the minimum number

of bins. Bins have different, but fixed, sizes, i.e. the total size of the items packed in

any single bin does not have to exceed the bin size (see for example [2.3,5]).

In the problem we investigate here, the number of available bins is limited but their

sizes are estmdibk~, that is, the total size of the items packed into a single bin can

exceed it, if necessary. One is asked to minimize the total size of the bins.

* C‘orrcspondin_c author.

016h-2tXXi99’$-we front matter 0 1999 Elsevier Sc~cnce R.V. All rights reserved

t’ll: SUlhh-2 t XX(‘)9)00020-7

182 P. Dell’Olmo, M. G. Speranzu I Discrrte Applied Muthemutics 94 (1999) 181-l 91

This particular bin-packing problem arises in a variety of scheduling and storage-

allocation problems. As a storage-allocation problem, our model may be applied in any

case in which extra space can be obtained from a fixed set of locations (bins) of differ-

ent size at a given cost and we are asked to minimize the total cost. As a scheduling

model consider a problem with two dedicated machines where two types of tasks have

to be executed. Tasks of the first type require both machines for some time, and then

only one machine for an additional processing time. Tasks of the second type require

execution on the second machine only. The objective function is the minimization of

the makespan. Another application of the same model is the scheduling of duties within

workers’ regular time. In case of need, the workers can make some overtime work (ex-

ceeding regular time). The problem is that of assigning duties to workers in such a way

that the total overtime work is minimized. It is easy to be seen with a reduction from

3-partition that this problem is strongly NP-hard. Therefore, approximation algorithms

should be applied which can find near-optimal solutions in reasonable time. The special

case with equal bins has been recently investigated in [11, where the authors study the

(off-line) problem, and in [6] where the on-line variant of the problem is considered.

In this paper, we analyze the general packing problem with unequal bins, under the

assumption that each item is smaller than any bin, in both the off-line case, in which

all items are known in advance, and the on-line variant, in which unknown items

arriving one-by-one must be assigned immediately to a bin and the assignment cannot

be changed later.

For the off-line problem, we will investigate the worst-case performance of the

well-known longest processing time (LPT) algorithm. This heuristic was introduced

by Graham [4] as an approximation to the multiprocessor scheduling problem with the

objective of minimizing the makespan. LPT sorts the items in non-increasing order of

their processing times into a list and assigns at each iteration the first item of the list

to a bin with biggest idle space. The time complexity of LPT is O(n(logm + log n)),

where m denotes the number of bins and n the number of items. In Section 3, we will

show that it yields a worst-case performance of 2(2 - &).

The on-line variant is examined is Section 4, where we first show a lower bound

of i on the worst-case relative error of any on-line algorithm, with respect to the

off-line optimum. Secondly, we analyze the performance of the list scheduling (LS)

algorithm, which assigns the incoming item to the bin with biggest idle space. The

time complexity of LS is O(n log m). We show that the LS algorithm has a worst-case

error equal to 2. This bound is shown to be tight.

2. Notation and problem definition

We are given m bins B1, . _ . , B,, with size b I,. . . , 6,. The items to be assigned to

the bins constitute a set Y of IZ elements of length ti. Since an item is characterized

by its length, we will identify it with its length t;. It is assumed that

ti < min bj,
I <f<rn

i= l,...,n.

The loach 1, of a bin B., is just the length of the items contained in B,. The sirr ot

a bin B; is defined by max{hi.hi}. The objective is to minimize the total size of the

bins.

Consider the solution given by any heuristic algorithm. In general, some of the bins

are covered with possibly an item which partially exceeds the original size of the bin.

while some other bins still have idle space. Given a heuristic solution, we denote by:

Th the set of items which exceed a bin; k = 1 Tkl the number of items which exceed

bins (that is the number of exceeded bins): T, the set of items which do not exceed a

bin and ussipzed gfter an item has exceeded a bin: 6 = [T,,l: T,-L-~, the set of items

ossig~zru k@e an item exceeds a bin. Note that .Y = Tk u T,, U T,l-h-_,,. Moreover. let

us denote by: F, the idle space of an exceeded bin B,, before the last item has been

assigned to B,; c, the exceeding part of an exceeded bin B,; .s, the idle space of a

non-exceeded bin Bi.

We renumber the bins so that the first k bins are exceeded. Observe that in this

analysis we can assume k < m, otherwise it can be easily verified that both the proposed

algorithms find an optimal solution of value equal to c:‘_, t,. This assumption will be

implicitly used in some proofs of the following sections.

3. An approximation result for the LPT heuristic

In this section, the worst-case behavior of LPT for our problem will be analyzed.

We will prove a performance ratio strictly less than 2(2 ~ &).

Let us denote with 99-F(l) the value of the heuristic solution for instance I,

Q,(I) the value of the optimal solution for instance 1.

and

Proof. As the heuristic LPT assigns the largest item to the largest idle space. when

the first exceeding item tl is assigned, no idle space greater than or equal to r/ is

available. This implies that, by assumption (I), i.e. h, ati, ,j = I,. _. ,m. in that step of

the algorithm there is no empty bin. Hence. n - k - 6. that is the number of items

assigned before the first item t! has exceeded a bin. is greater than or equal to 177. 1

Remark 1. As the heuristic LPT assigns items to the largest idle space it holds

c;- , ‘./
k

- 3 min rj 3
s > qi,,, s/

, l....,X
max , , ~

/-X+1 ,,I m-k ’

(2)

184 P. Dell’Olmo, M. G. Sperunzu I Discrete Applied Mathematics 94 (1999) 181-l 91

Theorem 1. For all problem instances I,

999-(Z) < , + (m - k)k
G(Z) ’ (n - 6)m’

Proof. Three different cases will be examined separately.

Case (a):

kbj = kti.
j=l I=1

In this case: CF=, ej = C,“=,+, sj. Then, due to (2)

k k

/=I j=l

Adding (m - k) Et= ,, 1 ej to both right and left members of the above inequality, we

obtain

(m - k)&(r, +e,)>m&ei

As (Yj + ej) is the length of the item which exceeds bin Bj, the above inequality can

be rewritten as
k

(m-k> c t;arnxe,. (3)
4 E r, j=l

The exceeding items are smaller than or equal to the items assigned before the first

item exceeds a bin; therefore

c t, E T, 6 c

k
d max ti d min

t, E T,,-a-,, ti

f, E TA
ti d

1, E Tn-k-<i n-k-6

Hence

Adding k(Ct, E TL tj + C,, E ,., t;) to both members of the previous inequality, we obtain

By combining (3) with (4) it follows that

(4)

P. Dell’Olmo, M. G. Spermzcr I Discrrtr Applied Mutlwtnutic~s 94 (I WY) 181-l Yl IX5

then

(5)

C’(I)3 Cb,.
/ -1

Y.P.F(f) <, + cm - k)k
C(I) ’ (n - S)m’

due to the assumption of the Cusr (a): CT’_, 6, = C:‘, t,

Cuse (b):

111

xb, > -&.

1-1 1-I

In this case, we can consider a new set .?, such that V’t; E .F the following four

conditions are satisfied:

(i) t; Gmin,, t F tj;

(ii) I;=, b,=C,,.Ft;+Cc,,p2;;

(iii) i, does not exceed any bin in the heuristic solution;

(iv) i, is smaller than any idle space in the optimal solution.

Under the above conditions, we have

ti = I.7 u .Pl. 8 = 1.9Jj U .cj;il = l.Kj CJ .?I,

hence

(m - k)k (m - k)k

(yi - ,$), = (n ~ 6)m’

If i denotes the new instance obtained by the same bins of I and the new set of items

.B L’ .E from (iv) it follows that

c’(i) = C(I)

Moreover, by (5) obtained for the CUSP (a):

186 P. Dell’Olmo, M. G. Sperunza I Discrete Applied Muthematics 94 (1999) 181-191

For (ii):

= 1 + Cm - k)k
(n - 6)m’

Cuse (c):

/=I 1=1

Let us consider a new instance I’ obtained by the same bins of I and the biggest items

t,! E F, whose sum is equal to CT’, bj (if necessary, cut an item in two parts and

consider only one of them). Let r’ be the new set of items. As the new instance falls

in Cuse (a), due to (5)

2?PT(I’)< ebj
(m - k)k

j=l
(n - 6)m

and

Obviously

n

thus

Theorem 2. For all prohlerrl instances I.

yy < 2(2 - Jz).

Proof. As

n3m + k + 6, n-d>m+k,

it follows that

(m-k)k<(m-k)k

(n-ii)m (m+k)m.

We directly verify that

(m-k)k

(m + k)m
63-2~5, Vm,kEZ’.

km ~ k’<(3 - 2&)(m2 + km),

(3 - 2v/2)m2 + 2(1 ~ d?)km + k’ 30,

as

(3 ~ 2&)m* + 2(I - &)km + k’ = [(1 ~ fi)nz + k]‘.

Thus

Y9.F(I)
< 1 + (m ~ k)k < 2(2 - C’Z),

C(I) ’ (n - 6)m

where the strict inequality is due to the irrational value. 3

Remark 2. Note that

2(2 ~ A, N 1.171573,

1.16 L=z 4 <2(2-Jz)<+1.2

and 2(2 ~ 4) is the smallest upper bound for the parametric bound obtained from

Theorem I. This can be easily seen from the proof of Theorem 2. On the other hand.

the parametric bound of Theorem I is obtained by using cTE1 h, as lower bound for

the optimum value, which is probably not sufficient to obtain the tight bound.

We can build an instance I such that the bound YXF(/)! c’;‘, h, is very close to

2(2 - 4).

Example 1. Take 12 bins, each with length 1 and 17 items, each with length gl. The

heuristic algorithm assigns the first 12 items to diRerent bins and finally 5 items exctzd

5 bins. The value of the heuristic is

188 P. Dell’Olmo, M. G. Speranzu I Discrete Applied Muthemutics 94 (1999) 181-l 91

while: x,7’, bj = 121. Thus the ratio:

~~~(I) 239 

C/“=l bi 
= ~ = 1.171569, 

12 x 17 

which is very close to 2(2- &). However, in this instance the optimum is not Cy=, bj 

and the heuristic finds the optimum solution. 

Our conjecture is that the tight bound is !, as obtained by the instance with two 

bins of lengths bl = 4, b2 = 3, and three items of sizes tl = 3, and t;! = t3 = 2. 

4. Worst-case analysis for on-line list scheduling algorithm 

In this section, we consider the on-line assignment problem, where each incoming 

item has to be assigned immediately to a bin and the assignment cannot be changed 

later. The objective is still the minimization of the sum of the sizes of the bins. De- 

noting with Z(I) the value of the objective function, obtained by an on-line algorithm 

on the problem instance I, we show a lower bound of i on the worst-case relative 

error of any Z(Z), with respect to the off-line problem. Also we show that the list 

scheduling algorithm, which assigns the incoming item to the bin with biggest idle 

space, has a worst-case error equal to $. 

In order to show the performance of any on-line algorithm, we apply the same 

reasoning presented in [6] and consider an instance I given by 2 bins both of length 1. 

Suppose two items arrive of length i. If an algorithm H assigns them to the first bin, 

then two items, both of length ; may arrive. In this case: 

If the algorithm H assigns the first two items to different bins, then 2 items of length 

3 and 1 may arrive. In this case: 

Z(I) 7 
m=6’ 

Remark 3. No on-line algorithm H can have a worst-case performance better than i. 

Let us denote with _FP’(Z) the value of the solution obtained by the LS algorithm, 

which assigns the incoming item to the bin with largest idle space. 

Theorem 3. For all problem instances I, 

~~(0 < 2, 
0(1)‘4 

Moreover, the bound is tight. 

Proof. Let the bins of the solution, obtained by LS, be numbered so that the exceeded 

bins are the first k bins of I. 



P. Dell’Olmo, M. G. Speronzul Discrere Applied Muthmlatics 94 11999) IKI-191 I 8’) 

We first show that: 

Two different cases will be examined separately. 

CUSP (a): 

-&;= kl,. 

/-I 1-l 

In this case C:“,+, ‘,, F 3 C,f=, ei and, by operating exactly as in Case (a) of Theorem I. 

one obtains inequality (3). Then, the value obtained by LS is 

Denoting 

from the assumption (1) we obtain: 

(6) 

As ci (I) 3 Cy=, b,, we obtain: 

U.Y(l) ~ c,“=, b, + Km - k)Wmlbcn < 1 + [(m - /ok/m]b,,, 

I”(I) C;‘, bj ’ CT., b, 

< , + [(m - k)k/mlbmin _ , + Cm - k)k 
\ 

mbmln m2 

Cusr (b): 

n, n 

xh, <Et,. 

Let us consider a new instance I’ obtained by the same bins of I and the biggest items 

f,’ E 5, whose sum is equal to Cy=, bj (if necessary, cut an item into two parts and 

consider only one of them). Let .T’ be the new set of items. As the new instance falls 

in Cuse (a), from (6): 

oY,Y(l’) < 2 b, + (m ik)’ t,,,. 
j-l 



Moreover, 

then 

We directly verify that 

(m-k)k<! ‘drn kEZ+, 
m2 ‘4’ ) 

4(mk - k*) <m2, 

m2 - 4mk + 4k2 3 0, Vm, k E Z’, 

as 

m* - 4mk + 4k2 = (m - 2k)2. 

Thus 

ln order to show the bound is tight, consider, for example, the instance with two bins 

of length bl = b2 = 2 and three items tl = t2 = 1, t3 = 2 arriving in the order tl 3 t2 -x t3. 

0 

5. Conclusions 

In this paper we studied the problem of partitioning items in a set of unequal bins 

under the assumption that each item is smaller than any bin. The objective is to mini- 

mize the total size, i.e. the sum of the sizes of the bins considering that the size of each 

bin, if necessary, can be extended. We examined both the off-line case and the on-line 

variant of this problem. For the former case, when all items are known in advance, 

we analyzed the worst-case performance of the longest processing time heuristic and 

proved a bound of 2(2 - fi). 0 ur conjecture is that the tight bound is f 

For the on-line case, where each unknown incoming item has to be assigned imme- 

diately to a bin and the assignment cannot be changed later, we gave a lower bound of 

i on the worst-case relative error of any on-line algorithm with respect to the off-line 

optimum. Moreover, we analyzed the performance of a list scheduling algorithm, which 



assigns the incoming item to the bin with biggest idle space, proving a worst-case error 

equal to $. This bound was shown to be tight. 

We conclude by observing that other heuristics which perform well in the standard 

bin packing problem may do no better than LPT. This is the case of the best fit 

descending (BFD) algorithm in which items are ordered by size. like in LPT. but an 

item is assigned to the fullest bin it fits in. Example 1 shows that, if the sum of the 

bins is used as lower bound on the optimum. the bound on the worst-case performance 

of LPT cannot be reduced by the BFD. For the on-line case, a best fit (BF) algorithm 

assigns the incoming item to the fullest bin it fits in. In this case. a variant of the 

example given at the end of the proof of Theorem 3, with tI = 1. tz = I + ;:. tl 2 

shows that BF cannot do better than LS in the worst-case. 

References 

[I] P. Dcll’Olmo, H. Kellerer. M.G. Speranza, 2s. Tuza, A 13; I 2 approximation algorithm for bin pucklng 

with extendable bins, IPL 65 (1998) 229-233. 

[2] D.K. Friescn. F.S. Kuhl, Analysis of a hybrid algorithm for packing unequal bins. SIAM J. (‘omput 

17 (1988) 23-40. 

[3] D.K. Friesen, M.A. Langston, Variable sized bin packing. Sl.4M J. Comput. 15 (19X6) 222-230 

[4] R.L.. Graham, Bounds on multiprocessing timmg anomalies, SIAM J. Appl. Math. 17 (1969) 267 2hO. 

[S] F.D. Murgolo. An efficient approximation scheme for variable-sized bin packing. SIAM J. Cornput Ih 

(19X7) 149-161. 

[h] M.G. Speranza, Zs. Tuza, On-line approximation algorithm\ for partitioning Ifems in extcndablc bun<. 

1996. to appear in Annals of Operational Rehearch. 


