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LAGRANGIAN RELAXATION AND 
NETWORK OPTIMIZATION 

Chapter OutlIne 

16.1 Introduction 

I never missed the opportunity to remove obstacles in the way 
of unity. 

-Mohandas Gandhi 

16.2 Problem Relaxations and Branch and Bound 
16.3 Lagrangian Relaxation Technique 
16.4 Lagrangian Relaxation and Linear Programming 
16.5 Applications of Lagrangian Relaxation 
16.6 Summary 

16.1 INTRODUCTION 

As we have noted throughout our discussion in this book, the basic network flow 
models that we have been studying-shortest paths, maximum flows, minimum cost 
flows, minimum spanning trees, matchings, and generalized and convex flows­
arise in numerous applications. These core network models are also building blocks 
for many other models and applications, in the sense that many models met in prac­
tice have embedded network structure: that is, the broader models are network 
problems with additional variables and/or constraints. 

In this chapter we consider ways to solve these models using a solution strategy 
known as decomposition which permits us to draw upon the many algorithms that 
we have developed in previous chapters to exploit the underlying network structure. 
In a sense this chapter serves a dual purpose. First, it permits us to introduce a 
broader set of network optimization models than we have been considering in our 
earlier discussion. As such, this chapter provides a glimpse of how network flow 
models arise in a wide range of applied problem settings that cannot be modeled as 
pure network flow problems. Second, the chapter introduces a solution method, 
known as Lagrangian relaxation, that has become one of the very few solution 
methods in optimization that cuts across the domains of linear and integer program­
ming, combinatorial optimization, and nonlinear programming. 

Perhaps the best way to understand the basic idea of Lagrangian relaxation is 
via an example. 
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Constralned Shortest Paths 

Consider the network shown in Figure 16.I(a) which has two attributes associated 
with each arc (i, j): a cost Cij and a traversal time tij' Suppose that we wish to find 
the shortest path from the source node 1 to the sink node 6, but we wish to restrict 
our choice of paths to those that require no more than T = 10 time units to traverse. 
This type of constrained shortest path application arises frequently in practice since 
in many contexts a company (e.g., a package delivery firm) wants to provide its 
services at the lowest possible cost and yet ensure a certain level of service to its 
customers (as embodied in the time restriction). In general, the constrained shortest 
path problem from node 1 to node n can be stated as the following integer program­
ming problem: 

subject to 

:L Xij-

{j: U.j)EA} 

Minimize :L CijXij 
(iJ)EA 

{

I 
:L Xji = 0 

{j:(j.i)EA} -I 

:L tijxij ~ T, 
(i.j)EA 

for i = 1 
for i E N - {l, n}, 
for i = n 

Xij = 0 or 1 for all (i, j) E A. 

(16.la) 

(16.lb) 

(16.lc) 

(16.ld) 

The problem is not a shortest path problem because of the timing restriction. 
Rather, it is a shortest path problem with an additional side constraint (16.lc). Instead 
of solving this problem directly, suppose that we adopt an indirect approach by 
combining time and cost into a single modified cost; that is, we place a dollar equiv­
alent on time. So instead of setting a limit on the total time we can take on the chosen 
path, we set a "toll charge" on each arc proportional to the time that it takes to 

(a) (b) 

Figure 16.1 Time-constrained shortest path problem: (a) constrained shortest path problem 
(bold lines denote the shortest path for J.L = 0); (b) modified cost c + J.Ll with Lagrange 
multiplier J.L = 2 (bold lines denote the shortest path). 
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traverse that arc. For example, we might charge $2 for each hour that it takes to 
traverse any arc. Note that if the toll charge is zero, we are ignoring time altogether 
and the problem becomes a usual shortest path problem with respect to the given 
costs. On the other hand, if the toll charge is very large, these charges become the 
dominant cost and we will be seeking the quickest path from the source to the sink. 
Can we find a toll charge somewhere in between these values so that by solving the 
shortest path problem with the combined costs (the toll charges and the original 
costs), we solve the constrained shortest path problem as a single shortest path 
problem? 

For any choice ~ of the toll charge, we solve a shortest path problem with 
respect to the modified costs Cij + ~tij. For the sample data shown in Figure 16.1(a), 
if ~ = 0, the modified problem becomes the shortest path problem with respect to 
the original costs Cij and the shortest path 1-2-4-6 has length 3. This value is an 
obvious lower bound on the length of the constrained shortest path since it ignores 
the timing constraint. Now suppose that we set ~ = 2 and solve the modified prob­
lem. Figure 16.1(b) shows the modified costs Cij + 2tij. The shortest path 1-3-2-
5-6 has length 35. In this case, the path 1-3-2-5-6 that solves the modified problem 
happens to require 10 units to traverse, so it is a feasible constrained shortest path. 
Is it an optimal constrained shortest path? 

To answer this question, let us make an important observation (which we will 
prove formally in the next section). Let P, with cost Cp = L(i.})EP Cij and traversal 
time tp = LU.})EP tij, be any feasible path to the constrained shortest path problem, 
and let l(~) denote the optimal length of the shortest path with the modified costs 
when we impose a toll of ~ units. Since the path P is feasible for the constrained 
shortest path problem, the time tp required to traverse this path is at most T = 10 
units. With respect to the modified costs Cij + ~tij, the cost Cp + ~tp of the path P 
is the path's true cost Cp plus ~tp ~ ~T units. Therefore, if we subtract ~T from the 
modified cost Cp + ~tp of this path, we obtain a lower bound Cp + ~tp - ~T = 
Cp + ~(tp - T) ~ Cp on the cost Cp of this path. Since the shortest path with respect 
to the modified arc costs is less than or equal to the modified cost of any particular 
path, l(~) ~ Cp + ~tp and so l(~) - ~T is a common lower bound on the length of 
any feasible path P and thus on the length of the constrained shortest path. Because 
this argument is completely general and applies to any value ~ 2: 0 of the toll charges, 
if we subtract ~Tfrom the optimal length of the shortest path of the modified problem, 
we obtain a lower bound on the optimal cost of the constrained shortest path problem. 

Bounding Principle. For any nonnegative value of the toll ~, the length l(fL) 
of the modified shortest path with costs Cij + ~tij minus ~T is a lower bound on the 
length of the constrained shortest path. 

Note that for our numerical example, for ~ = 2, the cost of the modified shortest 
path problem is 35 units and so 35 - 2( T) = 35 - 2( 1 0) = 15 is a lower bound on 
the length of the optimal constrained shortest path. But since the path 1-3-2-5-6 
is a feasible solution to the constrained shortest path problem and its cost equals 
the lower bound of 15 units, we can be assured that it is an optimal constrained 
shortest path. 

Observe that in this example we have been able to solve a difficult optimization 
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model (the constrained shortest path problem is an Xg:>-complete problem) by re­
moving one or more problem constraints-in this case the single timing constraint­
that makes the problem much more difficult to solve. Rather than solving the difficult 
optimization problem directly, we combined the complicating timing constraint with 
the original objective function, via the toll IJ., so that we could then solve a resulting 
embedded shortest path problem. The motivation for adopting this approach was 
our observation that the original constrained shortest path problem had an attractive 
substructure, the shortest path problem, that we would like to exploit algorithmically. 
Whenever we can identify such attractive substructure, we could adopt a similar 
approach. For reasons that will become clearer in the next section, this general 
solution approach has become known as Lagrangian relaxation. 

In our example we have been fortunate to find a constrained shortest path by 
solving the Lagrangian subproblem for a particular choice of the toll IJ.. We will not 
always be so lucky; nevertheless, as we will see, the lower bounding mechanism of 
Lagrangian relaxation frequently provides valuable information that we can exploit 
algorithmically. 

Lagrangian relaxation is a general solution strategy for solving mathematical 
programs that permits us to decompose problems to exploit their special structure. 
As such, this solution approach is perfectly tailored for solving many models with 
embedded network structure. The Lagrangian solution strategy has a number of 
significant advantages: 

1. Since it is often possible to decompose models in several ways and apply La­
grangian relaxation to each different decomposition, Lagrangian relaxation is 
a very flexible solution approach. Indeed, because of its flexibility, Lagrangian 
relaxation is more of a general problem solving strategy and solution framework 
than any single solution technique. 

2. In decomposing problems, Lagrangian relaxation solves core subproblems as 
stand-alone models. Consequently, the solution approach permits us to exploit 
any known methodology or algorithm for solving the subproblems. In partic­
ular, when the subproblems are network models, the Lagrangian solution ap­
proach can take advantage of the various algorithms that we have developed 
previously in this book. 

3. As we have already noted, Lagrangian relaxation permits us to develop bounds 
on the value of the optimal objective function and, frequently, to quickly gen­
erate good, though not necessarily optimal solutions with associated perfor­
mance guarantees-that is, a bound on how far the solution could possibly be 
from optimality (in objective function value). In many instances in the context 
of integer programming, the bounds provided by Lagrangian relaxation meth­
ods are much better than those generated by solving the linear programming 
relaxation of the problems, and as a consequence, Lagrangian relaxation is 
often an attractive alternative to linear programming as a bounding mechanism 
in branch-and-bound methods for solving integer programs. 

4. In many instances we can use Lagrangian relaxation methods to devise effective 
heuristic solution methods for solving complex combinatorial optimization 
problems and integer programs. 
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In the remainaer of this chapter we describe the Lagrangian relaxation solution 
approach in more detail and demonstrate its use in solving several important network 
optimization models. Our purpose is not to present a comprehensive treatment of 
Lagrangian relaxation or of its applications to the field of network optimization, but 
rather to introduce this general solution strategy and to illustrate its applications in 
a way that would lay the essential foundations for applying the method in many other 
problem contexts. As a by-product of this discussion, in the text and in the exercises 
at the end of this chapter we introduce several noteworthy network optimization 
models that we do not treat elsewhere in the book. 

Since one of the principal uses of Lagrangian relaxation is within implicit enu­
meration procedures for solving integer programs, before describing Lagrangian re­
laxation in more detail, we first discuss its use within classical branch-and-bound 
algorithms for solving integer programs. The reader can skip this section without 
loss of continuity. 

16.2 PROBLEM RELAXATIONS AND BRANCH AND 
BOUND 

In the last section we observed that Lagrangian relaxation permits us to develop a 
lower bound on the optimal length of a constrained shortest path. In Section 16.3 
we develop a generalization of this result, showing that we can obtain a lower bound 
on the optimal objective function value of any minimization problem. These lower 
bounds can be of considerable value: for example, for our constrained shortest path 
example, we were able to use a lower bound to demonstrate that a particular solution 
that we generated by solving a shortest path subproblem, with modified costs, was 
optimal for the overall constrained problem. In general, we will not always be as 
fortunate in being able to use a lower bound to guarantee that the solution to a single 
subproblem solves the original problem. Nevertheless, as we show briefly in the 
section, we might still be able to use lower bounds as an algorithmic tool in reducing 
the number of computations required to solve combinatorial optimization problems 
formulated as integer programs. 

Consider the following integer programming model: 

Minimize ex 

subject to 

xE F. 

In this formulation, the set F represents the set of feasible solutions to an integer 
program, that is, the set of solutions x = (XI, X2, ••• , xJ) to the system 

S1ix = b, 

Xj = 0 or 1 for j = 1, 2, ... , J. 

In a certain conceptual sense, this integer program is trivial to solve: We simply 
enumerate every combination of the decision variables, that is, all zero-one vectors 
(XI, X2, ••• ,xJ) obtained by setting each variable Xj to value zero or 1; from among 
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16.3 LAGRANGIAN RELAXATION TECHNIQUE 

To describe the general form of the Lagrangian relaxation procedure, suppose that 
we consider the following generic optimization model formulated in terms of a vector 
x of decision variables: 

subject to 

z* = min ex 

stlx = b, 

xEX. 

(P) 

This model (P) has a linear objective function ex and a set stlx = b of explicit 
linear constraints. The decision variables x are also constrained to lie in a given 
constraint set X which, as we will see, often models embedded network flow struc­
ture. For example, the constraint set X = {x : Xx = q, 0 ~ x ~ u} might be all the 
feasible solutions to a network flow problem with a supply/demand vector q. Or, 
the set X might contain the incidence vectors of all spanning trees or matchings of 
a given graph. Unless we state otherwise, we assume that the set X is finite (e.g., 
for network flow problems, we will let it be the finite set of spanning tree solutions). 

As its name suggests, the Lagrangian relaxation procedure uses the idea of 
relaxing the explicit linear constraints by bringing them into the objective function 
with associated Lagrange multipliers ~ (this old idea might be a familiar one from 
advanced calculus in the context of solving nonlinear optimization problems). We 
refer to the resulting problem 

Minimize ex + ~(stlx - b) 

subject to 

xEX, 

as a Lagrangian relaxation or Lagrangian subproblem of the original problem, and 
refer to the function 

L(~) = min{cx + ~(stlx - b) : x EX}, 

as the Lagrangian function. Note that since in forming the Lagrangian relaxation, 
we have eliminated the constraints stlx = b from the problem formulation, the so­
lution of the Lagrangian subproblem need not be feasible for the original problem 
(P). Can we obtain any useful information about the original problem even when the 
solution to the Lagrangian subproblem is not feasible in the original problem (P)? 
The following elementary observation is a key result that helps to answer this ques­
tion and that motivates the use of the Lagrangian relaxation technique in general. 

Lemma 16.1 (Lagrangian Bounding Principle). For any vector ~ of the La­
grangian multipliers, the value L(~) of the Lagrangian function is a lower bound 
on the optimal objective function value z* of the original optimization problem (P). 

Proof. Since sflx = b for every feasible solution to (P), for any vector ~ of 
Lagrangian multipliers, z * = min{ ex : sflx = b, x E X} = min{ ex + IJ.( stlx - b) : 
sflx = b, x E X}. Since removing the constraints sflx = b from the second formulation 
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cannot lead to an increase in the value of the objective function (the value might 
decrease), z* ~ min{cx + ~(3lx - b) : x E X} = L(~). • 

As we have seen, for any value of the Lagrangian multiplier ~, L(~) is a lower 
bound on the optimal objective function value of the original problem. To obtain the 
sharpest possible lower bound, we would need to solve the following optimization 
problem 

L * = maxf.LL(~) 

which we refer to as the Lagrangian multiplier problem associated with the original 
optimization problem (P). The Lagrangian bounding principle has the following im­
mediate implication. 

Property 16.2 (Weak Duality). The optimal objective function value L * of the 
Lagrangian multiplier problem is always a lower bound on the optimal objective 
function value of the problem (P) (i.e., L * ~ z*). 

Our preceding discussion provides us with valid bounds for comparing objective 
function values of the Lagrange multiplier problem and optimization (P) for any 
choices of the Lagrange multipliers ~ and any feasible solution x of (P): 

L(~)~L*~z*~cx. 

These inequalities furnish us with a guarantee when a Lagrange mUltiplier ~ to the 
Lagrange multiplier problem or a feasible solution x to the original problem (P) are 
optimal. 

Property 16.3 (Optimality Test) 
(a) Suppose that ~ is a vector of Lagrangian multipliers and x is a feasible solution 

to the optimization problem (P) satisfying the condition L(~) = cx. Then L(~) 
is an optimal solution of the Lagrangian multiplier problem [i.e., L * = L(J-L)] 
and x is an optimal solution to the optimization problem (P). 

( b) If for some choice of the Lagrangian multiplier vector ~, the solution x* of the 
Lagrangian relaxation is feasible in the optimization problem (P), then x* is an 
optimal solution to the optimization problem (P) and ~ is an optimal solution to 
the Lagrangian multiplier problem. 

Note that by assumption in part (b) of this property, L(~) = cx* + ~(3lx* -
b) and 3lx* = b. Therefore, L(~) = cx* and part (a) implies that x* solves problem 
(P) and ~ solves the Lagrangian multiplier problem. 

As indicated by Property 16.3, the bounding principle immediately implies one 
advantage of the Lagrangian relaxation approach-the method can give us a certif­
icate [in the form of the equality L(JJ.) = cx for some Lagrange multiplier J-L] for 
guaranteeing that a given feasible solution x to the optimization problem (P) is an 
optimal solution. Even if L(~) < cx, having the lower bound permits us to state a 
bound on how far a given solution is from optimality: If [cx - L(~)]/L(~) ~ 0.05, 
for example, we know that the objective function value of the feasible solution x is 
no more than 5% from optimality. This type of bound is very useful in practice-it 
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permits us to assess the degree of suboptimality of given solutions and it permits us 
to terminate our search for an optimal solution when we have a solution that we 
know is close enough to optimality (in objective function value) for our purposes. 

Lagrangian Relaxation and Inequality Constraints 

In the optimization model (P), the constraints :Ax = b are all equality constraints. 
In practice, we often encounter models, such as the constrained shortest path prob­
lem, that are formulated more naturally in inequality form :Ax :s b. The Lagrangian 
multiplier problem for these problems is a slight variant of the one we have just 
introduced: The Lagrangian multiplier problem becomes 

L * = max L(fJ.). 
~2:0 

That is, the only change in the Lagrangian multiplier problem is that the La­
grangian multipliers now are restricted to be nonnegative. In Exercise 16.1, by in­
troducing "slack variables" to formulate the inequality problem as an equivalent 
equality problem, we show how to obtain this optimal multiplier problem from the 
one we have considered for the equality problem. This development implies that the 
bounding property, the weak duality property, and the optimality test 16.3(a) are 
valid when we apply Lagrangian relaxation to any combination of equality and in­
equality constraints. 

There is, however, one substantial difference between relaxing equality con­
straints and inequality constraints. When we relax inequality constraints stlx :s b, if 
the solution x* of the Lagrangian subproblem happens to satisfy these constraints, 
it need not be optimal (see Exercise 16.2). In addition to being feasible, this solution 
needs to satisfy the complementary slackness condition fJ.(stlx* - b) = 0, which is 
familiar to us from much of our previous discussion of network flows in section 9.4. 

Property 16.4. Suppose that we apply Lagrangian relaxation to the optimi­
zation problem (PS) defined as minimize {cx : stlx :s b and x E X} by relaxing the 
inequalities stlx :S b. Suppose, further, that for some choice of the Lagrangian mul­
tiplier vector fJ., the solution x* of the Lagrangian relaxation (1) is feasible in the 
optimization problem (PS

), and (2) satisfies the complementary slackness condition 
fJ.(stlx* - b) = 0. Then x* is an optimal solution to the optimization problem (PS). 

Proof. By assumption, L(fJ.) = cx* + fJ.(:Ax* - b). Since fJ.(stlx* - b) = 0, 
L(fJ.) = cx*. Moreover, since :Ax* :S b, x* is feasible, and so by Property 16.3(a) 
x* solves problem (PS). • 

Are solutions to the Lagrangian subproblem of use in solving the original prob­
lem? Properties 16.3 and 16.4 show that certain solutions of the Lagrangian sub­
problem provably solve the original problem. We might distinguish two other cases: 
(1) when solutions obtained by relaxing inequality constraints are feasible but are 
not provably optimal for the original problem (since they do not satisfy the com­
plementary slackness condition), and (2) when solutions to the Lagrangian relaxation 
are not feasible in the original problem. 

In the first case, the solutions are candidate optimal solutions (possibly for use 
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in a branch-and-bound procedure). In the second case, for many applications, re­
searchers have been able to devise methods to modify "modestly" infeasible so­
lutions so that they become feasible with only a slightly degradation in the objective 
function value. These observations suggest that we might be able to use the solutions 
obtained from the Lagrangian subproblem as "approximate" solutions to the original 
problem, even when they are not provably optimal; in these instances, we can use 
Lagrangian relaxation as a heuristic method for generating provably good solutions 
in practice (the solutions might be provably good because of the Lagrangian lower 
bound information). The development of these heuristic methods depends heavily 
on the problem context we are studying, so we will not attempt to provide any further 
details. 

Solving the Lagrangian Multiplier Problem 

How might we solve the Lagrangian multiplier problem? To develop an understand­
ing of possible solution techniques, let us consider the constrained shortest path 
problem that we defined in Section 16.1. Suppose that now we have a time limitation 
of T = 14 instead of T = 10. When we relax the time constraint, the Lagrangian 
multiplier function L(~) for the constrained shortest path problem becomes 

L(~) = min{cp + ~(tp - T) : P E Cl}}. 

In this formulation, Cl} is the collection of all directed paths from the source node 1 
to the sink node n. For convenience, we refer to the quantity cp + ~(tp - T) as 
the composite cost of the path P. For a specific value of the Lagrangian multiplier 
~, we can solve L(~) by enumerating all the directed paths in Cl} and choosing the 
path with the smallest composite cost. Consequently, we can solve the Lagrangian 
multiplier problem by determining L(~) for all nonnegative values of the Lagrangian 
multiplier ~ and choosing the value that achieves max .... 2:0 L(~). 

Let us illustrate this brute force approach geometrically. Figure 16.2 records 
the cost and time data for every path for our numerical example. Note that the 
composite cost cp + ~(tp - T) for any path P is a linear function of ~ with an 
intercept of cp and a slope of (tp - T). In Figure 16.3 we have plotted each of these 
path composite cost functions. Note that for any specific value of the Lagrange 
mUltiplier ~, we can find L(~) by evaluating each composite cost function (line) and 
identifying the one with the least cost. This observation implies that the Lagrangian 
multiplier function L(~) is the lower envelope of the composite cost lines and that 
the highest point on this envelope corresponds to the optimal solution of the La­
grangian mUltiplier problem. 

In practice, we would never attempt to solve the problem in this way because 
the number of directed paths from the source node to the sink node typically grows 
exponentially in the number of nodes in the underlying network, so any such enu­
meration procedure would be prohibitively expensive. Nevertheless, this problem 
geometry helps us to understand the nature of the Lagrangian multiplier problem 
and suggests methods for solving the problem. 

As we noted in the preceding paragraph, to find the optimal multiplier value 
~ * of the Lagrangian mUltiplier problem, we need to find the highest point of the 
Lagrangian multiplier function L(~). Suppose that we consider the polyhedron de-
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Path cost Path time Composite cost 
Path P Cp tp Cp + J1 (tp - T) 

1-2-4-6 3 18 3 + 4 .... 

1-2-5-6 5 15 5 + .... 

1-2-4-5-6 14 14 14 

1-3-2-4-6 13 13 13- .... 

1-3-2-5-6 15 10 15 - 4 .... 

1-3-2-4-5-6 24 9 24 - 5 .... 

1-3-4-6 16 17 16 + 3 .... 

1-3-4-5-6 27 13 27 - .... 

1-3-5-6 24 8 24 - 6 .... 

Figure 16.2 Path cost and time data for constrained shortest path example with T 
= 14. 

fined by those points that lie on or below the function L(,....). These are the shaded 
points in Figure 16.3. Then geometrically, we are finding the highest point in a 
polyhedron defined by the function L(,....), which is a linear program. 

Even though we have illustrated this property on a specific example, this sit­
uation is completely general. Consider the generic optimization model (P), defined 
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Lagrange multiplier .... .. 

Figure 16.3 Lagrangian function for T = 14. 
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as min{ cx : Stlx = b, x E X} and suppose that the set X = {x I , x 2 , ..• ,XK} is finite. 
By relaxing the constraints Stlx = b, we obtain the Lagrangian multiplier function 
L(,....) = min{cx + ,....(Stlx - b) : x E X}. By definition, 

for all k = 1, 2, ... , K. 

In the space of composite costs and Lagrange multipliers,.... (as in Figure 16.3), 
each function cxk + ,....(Stlxk 

- b) is a multidimensional "line" called a hyperplane 
(if ,.... is two-dimensional, it is a plane). The Lagrangian multiplier function L(,....) is 
the lower envelope of the hyperplanes cxk + ,....(Stlxk 

- b) for k = I, 2, ... , K. In 
the Lagrangian multiplier problem, we wish to determine the highest point on this 
envelope: We can find this point by solving the optimization problem 

Maximize w 

subject to 

for all k = 1, 2, . . . , K, 

J-l unrestricted, 

which is clearly a linear program. We state this result as a theorem. 

Theorem 16.5. The Lagrangian multiplier problem L * = max~L(J-l) with 
L(,....) = min{cxk + J-l(Stlx - b) : x E X} is equivalent to the linear programming 
problem L* = max{w : w ~ cxk + J-l(Stlx k 

- b) for k = 1,2, ... , K}. • 

Since, as shown by the preceding theorem, the Lagrangian multiplier problem 
is a linear program, we could solve this problem by applying the linear programming 
methodology. One resulting algorithm, which is known as Dantzig- Wolfe decom­
position or generalized linear programming, is an important solution methodology 
that we discuss in some depth in Chapter 17 in the context of solving the multicom­
modity flow problem. One of the disadvantages of this approach is that it requires 
the solution of a series of linear programs that are rather expensive computationally. 
Another approach might be to apply some type of gradient method to the Lagrangian 
function L(J-l). As shown by the constrained shortest path example, the added com­
plication of this approach is that the Lagrangian function L(J-l) is not differentiable. 
It is differentiable whenever the optimal solution of the Lagrangian subproblem is 
unique; but when the subproblem has two or more solutions, the Lagrangian function 
generally is not differentiable. For example, in Figure 16.4, at J-l = 0, the path 
1-2-4-6 is the unique shortest path solution to the subproblem and the function 
L(fJ..) is differentiable. At this point, for the path P = 1-2-4-6, L(fJ..) = Cp + 
fJ..(tp - D; since tp = 18 and T = 14, L(fJ..) has a slope (tp - T) = (18 - 14) = 4. 
At the point fJ.. = 2, however, the paths 1-2-5-6 and 1-3-2-5-6 both solve the 
Lagrangian subproblem and the Lagrangian function is not differentiable. To ac­
commodate these situations, we next describe a technique, known as the subgradient 
optimization technique, for solving the (nondifferentiable) Lagrangian multiplier 
problem. 
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Figure 16.4 Steps of Newton's method for T = 14. 

Bubgradient Optimization Technique 

In solving optimization problems with the nonlinear objective function f(x) of an 
n-dimensional vector x, researchers and practitioners often use variations of the 
following classical idea: Form the gradient V f(x) of f defined as a row vector with 
components (af(x)ldxl, aj(x)ldx2, ... , af(x)ldxn ). Recall from advanced calculus 
that the directional derivative of f in the direction d satisfies the equality 

lim f(x + ad) - f(x) = Vf(x)d. 
8-0 a 

So if we choose the direction d so that Vf(x)d > 0 and move in the direction d with 
a small enough "step length" a-that is, change x to x + ad-we move uphill. This 
simple observation lies at the core of a considerable literature in nonlinear pro­
gramming known as gradient methods. 

Suppose that in solving the Lagrangian multiplier problem, we are at a point 
where the Lagrangian function L(fJ..) = min{ex + fJ..(six - b) : x E X} has a unique 
solution X, so is differentiable. Since L(fJ..) = ex + p,(six - b) and the solution 
x remains optimal for small changes in the value of fJ.., the gradient at this point is 
six - b, so a gradient method would change the value of fJ.. as follows: 

fJ.. +- fJ.. + a(six - b). 

In this expression, a is a step size (a scalar) that specifies how far we move in 
the gradient direction. Note that this procedure has a nice intuitive interpretation. 
If (six - b)i = 0, the solution x uses up exactly the required units of the ith resource, 
and we hold the Lagrange multiplier (the toll) fJ..i of that resource at its current value; 
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if (sctx - b); < 0, the solution x uses up less than the available units of the 
ith resource and we decrease the Lagrange multiplier fJ..i on that resource; and if 
(sa.x - b); > 0, the solution x uses up more than the available units of the ith resource 
and we increase the Lagrange multiplier fJ..i on that resource. 

To solve the Lagrangian multiplier problem, we adopt a rather natural extension 
of this solution approach. We let fJ..0 be any initial choice of the Lagrange multiplier; 
we determine the subsequent values fJ.. k for k = 1, 2, ... ,of the Lagrange multipliers 
as follows: 

fJ..k+1 = fJ..k + ek(sa.Xk - b). 

In this expression, Xk is any solution to the Lagrangian subproblem when fJ.. = fJ.. k 
and ek is the step length at the kth iteration. 

To ensure that this method solves the Lagrangian multiplier problem, we need 
to exercise some care in the choice of the step sizes. If we choose them too small, 
the algorithm would become stuck at the current point and not converge; if we choose 
the step sizes too large, the iterates fJ..k might overshoot the optimal solution and 
perhaps even oscillate between two nonoptimal solutions (see Exercise 16.4 for an 
example). The following compromise ensures that the algorithm strikes an appro­
priate balance between these extremes and does converge: 

k 

ek~ 0 and L ej~ 00. 

j=1 

For example, choosing ek = Ilk satisfies these conditions. These conditions 
ensure that the algorithm always converges to an optimal solution of the multiplier 
problem, but a proof of this convergence result is beyond the scope of our coverage 
in this book (the reference notes cite papers and books that examine the convergence 
of subgradient methods). 

One important variant of the subgradient optimization procedure would be an 
adaptation of "Newton's method" for solving systems of nonlinear equations. Sup­
pose, as before, that L(fJ..k) = cxk + Jj.k(sa.Xk - b); that is, Xk solves the Lagrangian 
subproblem when fJ.. = fJ.. k. Suppose that we assume that Xk continues to solve the 
Lagrangian subproblem as we vary fJ..; or, stated in another way, we make a linear 
approximation r(fJ..) = cxk + fJ..(sctx k - b) to L(fJ..). Suppose further that we know 
the optimal value L * of the Lagrangian multiplier problem (which we do not). Then 
we might move in the subgradient direction until the value of the linear approximation 
exactly equals L *. Figure 16.4 shows an example of this procedure when applied to 
our constrained shortest path example, starting with fJ.. k = O. At this point, the path 
P = 1-2-4-6 solves the Lagrangian subproblem and sa.Xk - b equals tp - T = 
18 - 14 = 4. Since L * = 7 and the path P has a cost Cp = 3, in accordance with 
this linear approximation, or Newton's method, we would approximate L(fJ..) by r( .... > 
= 3 + 4Jj., set 3 + 4fJ.. = 7, and define the new value of fJ.. as fJ..k+ J = (7 - 3)/4 = 
1. In general, we set the step length ek so that 

r(fJ..k+ I) = cxk + fJ..k+ I (sa.xk - b) = L *, 

or since, fJ..k+ 1 = fJ..k + ek(sa.Xk - b), 

r(fJ..k+l) = cxk + [fJ..k + ek(sa.Xk - b)](sa.xk - b) = L*. 
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Collecting terms, recalling that L(fJ..k) = cxk + fJ..(stxk - b), and letting /I y II = 
(L,; yJ)1/2 denote the Euclidean norm of the vector y, we can solve for the step length 
and find that 

L* - L(fJ..k) 
6k = 1/ stxk - b 1/ 2 ' 

Since we do not know the optimal objective function value L * of the Lagrangian 
multiplier problem (after all, that's what we are trying to find), practitioners of La­
grangian relaxation often use the following popular heuristic for selecting the step 
length: 

6 _ AdVB - L(fJ..k)] 
k - 1/ stxk - b 1/ 2 • 

In this expression, VB is an upper bound on the optimal objective function 
value z* of the problem (P), and so an upper bound on L* as well, and Ak is a scalar 
chosen (strictly) between 0 and 2. Initially, the upper bound is the objective function 
value of any known feasible solution to the problem (P). As the algorithm proceeds, 
if it generates a better (i.e., lower cost) feasible solution, it uses the objective function 
value of this solution in place of the upper bound VB. V sually, practitioners choose 
the scalars Ak by starting with Ak = 2 and then reducing Ak by a factor of 2 whenever 
the best Lagrangian objective function value found so far has failed to increase in 
a specified number of iterations. Since this version of the algorithm has no convenient 
stopping criteria, practitioners usually terminate it after it has performed a specified 
number of iterations. 

The rationale for these choices of the step size and the convergence proof of 
the subgradient method would take us beyond the scope of our coverage. In passing, 
we might note that the subgradient optimization procedure is not the only way to 
solve the Lagrangian multiplier problem: practitioners have used a number of other 
heuristics, including methods known as multiplier ascent methods that are tailored 
for special problems. Since we merely wish to introduce some of the basic concepts 
of Lagrangian relaxation and to indicate some of the essential methods used to solve 
the Lagrangian mUltiplier problem, we will not discuss these alternative methods. 

Subgradient Optimization and Inequality Constraints 

As we noted earlier in this section, if we apply Lagrangian relaxation to a problem 
with constraints stx ~ b stated in inequality form instead of the equality constraints, 
the Lagrange multipliers fJ.. are constrained to be nonnegative. The update formula 
fJ..k+ I = fJ..k + 6k(stxk - b) might cause one or more of the components fJ..i of fJ.. to 
become negative. To avoid this possibility, we modify the update formula as follows: 

fJ..k+l = [fJ..k + 6k(stxk - b)]+. 

In this expression, the notation [y] + denotes the "positive part" of the vector y; 
that is, the ith component of [y] + equals the maximum of 0 and Yi. Stated in another 
way, if the update formula fJ.. k + I = fJ.. k + 6k( stxk - b) would cause the ith component 
of fJ..i to be negative, then we simply set the value of this component to be zero. We 
then implement all the other steps of the subgradient procedure (i.e., the choice of 
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the step size 8 at each step and the solution of the Lagrangian subproblems) exactly 
the same as for problems with equality constraints. For problems with both equality 
and inequality constraints, we use a straightforward mixture of the equality and 
inequality versions of the algorithm: whenever the update formula for the Lagrange 
multipliers would cause any component fJ..i of fJ.. corresponding to an inequality con­
straint to become negative, we set the value of that multiplier to be zero. 

Let us illustrate the subgradient method for inequality constraints on our con­
strained shortest path example. Suppose that we start to solve our constrained short­
est path problem at fJ.. 0 = 0 with A 0 = O.S and with VB = 24, the cost corresponding 
to the shortest path 1-3-5-6joining nodes 1 and 6. Suppose that we choose to reduce 
the scalar Ak by a factor of 2 whenever three successive iterations at a giveri\value 
of Ak have not improved on the best Lagrangian objective function value L(fJ..). As 
we have already noted, the solution XO to the Lagrangian subproblem with fJ.. = 0 
corresponds to the path P = 1-2-4-6, the Lagrangian subproblem has an objective 
function value of L(O) = 3, and the subgradient Stlxu - b at fJ.. = 0 is (tp - 14) = 
IS - 14 = 4. So at the first step, we choose 

80 = 0.S(24 - 3)/16 = 1.05, 

fJ..1 = [0 + 1.05(4)] + = 4.2. 

For this value of the Lagrange multiplier, from Figure 16.3, we see that the path 
P = 1-3-2-5-6 solves the Lagrangian subproblem; therefore, L(4.2) = 15 + 
4.2(10) - 4.2(14) = 15 - 16.S = -1.S, and Stlx l 

- b equals (tp - 14) = 10 -
14 = - 4. Since the path 1-3-2-5-6 is feasible, and its cost of 15 is less than VB, 
we change VB to value 15. Therefore, 

81 = 0.S(15 + I.S)/16 = 0.S4, 

fJ..2 = [4.2 + 0.S4( - 4)] + = 0.S4. 

From iterations 2 through 5, the shortest paths alternate between the paths 1-2-4-
6 and 1-3-2-5-6. At the end of the fifth iteration, the algorithm has not improved 
upon (increased) the best Lagrangian objective function value of 6.36 for three it­
erations, so we reduce Ak by a factor of 2. In the next 7 iterations the shortest paths 
are the paths 1-2-5-6, 1-3-5-6, 1-3-2-5-6, 1-3-2-5-6, 1-2-5-6, 1-3-5-6, and 
1-3-2-5-6. Once again for three consecutive iterations, the algorithm has not im­
proved the best Lagrangian objective function value, so we decrease Ak by a factor 
of 2 to value 0.2. From this point on, the algorithm chooses either path 1-3-2-5-
6 or path 1-2-5-6 as the shortest path at each step. Figure 16.5 shows the first 33 
iterations of the subgradient algorithm. As we see, the Lagrangian objective function 
value is converging to the optimal value L * = 7 and the Lagrange multiplier is 
converging to its optimal value of fJ.. * = 2. 

Note that for this example, the optimal multiplier objective function value of 
L * = 7 is strictly less than the length of the shortest constrained path, which has 
value 13. In these instances, we say that the Lagrangian relaxation has a duality 
(relaxation) gap. To solve problems with a duality gap to completion (i.e., to find 
an optimal solution and a guarantee that it is optimal), we would apply some form 
of enumeration procedure, such as branch and bound, using the Lagrangian lower 
bound to help reduce the amount of concentration required. 
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k .... k tp - T L( .... k) A.k Ok 

0 0.0000 4 3.0000 0.80000 1.0500 

4.2000 -4 -1.8000 0.80000 0.8400 

2 0.8400 4 6.3600 0.80000 0.4320 

3 2.5680 -4 4.7280 0.80000 0.5136 

4 0.5136 4 5.0544 0.80000 0.4973 

5 2.5027 -4 4.9891 0.40000 0.2503 

6 ].5016 1 6.5016 0.40000 3.3993 

7 4.9010 -6 - 5.4059 0.40000 0.2267 

8 3.5406 -4 0.8376 0.40000 0.3541 

9 2.1244 -4 6.5026 0.40000 0.2124 

10 1.2746 I 6.2746 0.40000 3.4902 

II 4.7648 -6 -4.5886 0.40000 0.2177 

12 3.4589 -4 1.1646 0.20000 0.1729 

13 2.7671 -4 3.9316 0.20000 0.1384 

14 2.2137 -4 6.1453 0.20000 0.1107 

15 1.7709 6.7709 0.20000 1.6458 

16 3.4167 -4 1.3330 0.20000 0.1708 

17 2.7334 -4 4.0664 0.20000 0.1367 

18 2.1867 -4 6.2531 0.10000 0.0547 

19 1.9680 6.9680 0.10000 0.8032 

20 2.7712 -4 3.9150 0.10000 0.0693 

21 2.4941 -4 5.0235 0.10000 0.0624 

22 2.2447 -4 6.0212 0.05000 0.0281 

23 2.1325 -4 6.4701 0.05000 0.0267 

24 2.0258 -4 6.8966 0.05000 0.0253 

25 1.9246 6.9246 0.00250 0.0202 

26 1.9447 6.9447 0.00250 0.0201 

27 1.9649 6.9649 0.00250 0.0201 

28 1.9850 6.9850 0.00250 0.0200 

29 2.0050 -4 6.9800 0.00250 0.0013 

30 2.0000 -4 7.0000 0.00250 0.0012 

31 1.9950 I 6.9950 0.00250 0.0200 

32 2.0150 -4 6.9400 0.00250 0.0013 

33 2.0100 -4 6.9601 0.00125 0.0006 

Figure 16.5 Subgradient optimization for a constrained shortest path problem. 

18.4 LAGRANGIAN RELAXATION AND LINEAR 
PROGRAMMING 

In this section we discuss several theoretical properties of the Lagrangian relaxation 
technique. As we have noted earlier in Section 16.2, the primary use of the La-
grangian relaxation technique is to obtain lower bounds on the objective function 
values of (discrete) optimization problems. By relaxing the integrality constraints in 
the integer programming formulation of a discrete optimization problem, thereby 

Sec. 16.4 Lagrangian Relaxation and Linear Programming 615 



This side constraint specifies a flow relationship between several of the arcs 
in the network flow model. Relaxing this constraint and using Lagrangian relaxation 
provides us with one algorithmic approach for solving this problem. The algorithmic 
procedure for applying Lagrangian relaxation to the general network flow model 
with side constraints is essentially the same as the procedure we have discussed for 
the constrained shortest path problem: we associate nonnegative Lagrange multi­
pliers J.L with the side constraints 9'lx ~ b and bring them into the objective function 
to produce the network flow subproblem 

minimize{cx + J.L(9'lx - b) : Xx = q, I ~ x ~ u}, 

and then solve a sequence of these problems with different values of the Lagrange 
multipliers J.L which we update using the subgradient optimization technique. For 
each choice of the Lagrangian mUltiplier on this constraint, the Lagrangian sub­
problem is a network flow problem. In Exercise 9.9 we show that we can actually 
solve this special case of network flows with side constraints much more efficiently 
by solving a polynomial sequence of network flow problems. 

Application 16.2 Traveling Salesman Problem 

The traveling salesman problem is perhaps the most famous problem in all of network 
and combinatorial optimization: Its simplicity and yet its difficulty have made it an 
alluring problem that has attracted the attention of many noted researchers over a 
period of several decades. The problem is deceptively easy to state: Starting from 
his home base, node 1, a salesman wishes to visit each of several cities, represented 
by nodes 2, ... , n, exactly once and return home, doing so at the lowest possible 
travel cost. We will refer to any feasible solution to this problem as a tour (of the 
cities). 

The traveling salesman problem is a generic core model that captures the com­
binatorial essence of most routing problems and, indeed, most other routing problems 
are extensions of it. For example, in the classical vehicle routing problem, a set of 
vehicles, each with a fixed capacity, must visit a set of customers (e.g., grocery 
stores) to deliver (or pick up) a set of goods. We wish to determine the best possible 
set of delivery routes. Once we have assigned a set of customers to a vehicle, that 
vehicle should take the minimum cost tour through the set of customers assigned to 
it; that is, it should visit these customers along an optimal traveling salesman tour. 

The traveling salesman problem also arises in problems that on the surface 
have no connection with routing. For example, suppose that we wish to find a se­
quence for loadingjobs on a machine (e.g., items to be painted), and that whenever 
the machine processes job i after job j, we must reset the machine (e.g., clear the 
dies of the colors of the previous job), incurring a setup time Cij' Then in order to 
find the processing sequence that minimizes the total setup time, we need to solve 
a traveling salesman problem-the machine, which functions as the "salesman," 
needs to "visit" the jobs in the most cost-effective manner. 

There are many ways to formulate the traveling salesman problem as an op­
timization model. We present a model with an embedded (directed) network flow 
structure. Exercises 16.21 and 16.23 consider other modeling approaches. Let Cij 
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denote the cost of traveling from city i to city j and let Yij be a zero-one variable, 
indicating whether or not the salesman travels from city i to city j. Moreover, 
let us define flow variables Xij on each arc (i, j) and assume that the salesman has 
n - 1 units available at node 1, which we arbitrarily select as a "source node," and 
that he must deliver 1 unit to each of the other nodes. Then the model is 

subject to 

Minimize ~ CijYij 
(i.j)EA 

~ Yij = 1 for all i = 1, 2, ... , n, 
I S;jS;n 

~ Yij = 1 forallj = 1,2, ... , n, 
I s;iS;n 

Xx = b, 

Yij = 0 or 1 

for all (i, j) E A, 

for all (i, j) E A, 

for all (i, j) E A. 

(16.3a) 

(16.3b) 

(16.3c) 

(16.3d) 

(16.3e) 

(16.30 

(16.3g) 

To interpret this formulation, let A' = {(i, j) : Yij = I} and let A" {(i, j) : 
xij > O}. The constraints (16.3b) and (16.3c) imply that exactly one arc of A I leaves 
and enters any node i; therefore, A I is the union of node disjoint cycles containing 
all of the nodes of N. In general, any integer solution satisfying (16.3b) and (16.3c) 
will be the union of disjoint cycles; if any such solution contains more than one 
cycle, we refer to each of the cycles as subtours, since they pass through only a 
subset of the nodes. Figure 16.8 gives an example of a subtour solution to the con­
straints (16.3b) and (16.3c). 

Home base 

Figure 16.8 Infeasible solution for the 
traveling salesman problem containing 
subtours. 

Constraint (16.3d) ensures that A" is connected since we need to send 1 unit 
of flow from node 1 to every other node via arcs in A ". The "forcing" constraints 
(16.3e) imply that A" is a subset of A'. [Notice that since no arc need ever carry 
more than (n - 1) units of flow, the forcing constraint for arc (i, j) is redundant if 
Yij = 1.] These conditions imply that the arc set A' is connected and so cannot 
contain any subtours. We conclude that the formulation (16.3) is a valid formulation 
for the traveling salesman problem. 

One of the nice features of this formulation is that we can apply Lagrangian 
relaxation to it in several ways. For example, suppose that we attach Lagrange 
multipliers J.Lij ~ 0 with the forcing constraints (16.3e) and bring them into the ob­
jective function, giving the Lagrangian objective function 
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Minimize 
(i,j)EA (i,j)EA 

and leaving (16.3b)-(16.3d), (16.30, and (16.3g) as constraints in the Lagrangian 
subproblem. Note that nothing in this Lagrangian subproblem couples the variables 
Yi) and Xi). Therefore, the subproblem decomposes into two separate subproblems: 
(1) an assignment problem in the variables Yi), and (2) a minimum cost flow problem 
in the variables Xi). SO for any choice of the Lagrangian multipliers J,L, we solve two 
network flow subproblems; by using subgradient optimization we can find the best 
lower bound and optimal values of the multipliers. By relaxing other constraints in 
this model, or by applying Lagrangian relaxation to other formulations of the trav­
eling salesman problem, we could define other network flow subproblems (see Ex­
ercise 16.19). 

Application 16.3 Vehicle Routing 

The vehicle routing problem is a generic model that practitioners encounter in many 
problem settings including the delivery of consumer products to grocery stores, the 
collection of money from vending machines and telephone coin boxes, and the de­
livery of heating oil to households. As we have noted earlier in this section, the 
vehicle routing problem is a generalization of the traveling salesman problem. 

The vehicle routing problem is easy to state: Given (1) a fleet of K capacitated 
vehicles domiciled at a common depot, say node 1, (2) a set of customer sites j = 
2, 3, ... , n, each with a prescribed demand dj , and (3) a cost Ci) of traveling from 
location ito locationj, what is the minimum cost set of routes for delivering (picking 
up) the goods to the customer sites? We assume that the vehicle fleet is homogeneous 
and that each vehicle has a capacity of u units. 

There are many different variants on this core vehicle routing problem. For 
example, the vehicle fleet might be nonhomogeneous, each vehicle route might have 
a total travel time restriction, or deliveries for each customer might have time window 
restrictions (earliest and latest delivery times). We illustrate the use of Lagrangian 
relaxation by considering only the basic model, which we formulate with decision 
variables xt indicating whether (xt = 1) or not (xt = 0) we dispatch vehicle k on 
arc (i, j) and Yi) indicating whether some vehicle travels on arc (i, j): 

Minimize ~ ~ Ci)xt (16.4a) 
1 :5k:5K (i,j)EA 

subject to 

~ xt = Yi), (16.4b) 
1 :5k:5K 

~ Yi) = 1 for i = 2,3, ... ,n, (16.4c) 
l:5j:511 

~ yi) = I forj= 2,3, ... ,n, (16.4d) 

~ yJj=K, (16.4e) 
l:5j:511 

~ Yil = K, (16.40 
I :5j:511 
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